HEAT TRANSFER QUESTION BANK 2019-20

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Heat Transfer (16ME320) Year & Sem: III-B.Tech & II-Sem Course & Branch: B.Tech -ME Regulation: R16

<u>UNIT –I</u> Basic Concepts and Conduction

1	a)	Define the following terms.	L_1	5M
		i).Heat ii).Heat transfer		
	b)	List the some important areas which are covered under the discipline of heat	L_1	5M
		transfer.		
2	a)	List the basic laws which govern the heat transfer.	L_1	5M
	b)	Name and explain the mechanism of heat transfer	L_1	5M
3	a)	What is Fourier's law of conduction? State the assumption and essential	L_1	5M
		feature of it.		
	b)	Define the following terms.	L_1	5M
		i).Thermal Conductivity ii).Thermal Resistance		
4	a)	Distinguish between conduction, convection and radiation modes of heat	L_3	5M
		transfer		
	b)	Calculate the rate of heat transfer per unit area through a copper plate 45	L_4	5M
		mm thick, whose one face is maintained at 350 °C and the other face at 50		
		^o C. Take thermal conductivity of copper as 370 W/m ^o C.		
5	a)	What is conduction heat transfer? Explain its parameters.	L_1	5M
	b)	A plane wall is 150 mm thick and its wall area is 4.5 m^2 . If its conductivity	L_4	5M
		is 9.35 W/m °C and surface temperature are steady at 150 °C and 45 °C,		
		determine i).Heat transfer across the plane wall, ii).Temperature gradient in		
		the flow direction		
6	a)	What is convection heat transfer? Explain its parameters.	L_1	5M
	b)	A wire 1.5 mm diameter and 150 mm long is submerged in water at	L_4	5M
		atmospheric pressure. An electric current passed through the wire and is		
		increased until the water boils at 100 ⁰ C. Under the condition, if convective		
		heat transfer coefficient is 4500W/m ² ⁰ C. Find how electric power must be		
		supplied to the wire to maintain the wire surface at 120 ^{0}C		
7	a)	Write the laws of radiation? Explain its parameters.	L_1	10M
	b)	A surface having an area of 1.5 m^2 and maintained at $300 ^0\text{C}$ exchanges heat	L_4	5M
		by radiation with another surface at 40 0 C. The value factor due to the		
		geometric location and emissivity is 0.52. Determine		
		i).Heat loss by radiation ii).The value of thermal resistance		
		iii). The value of equivalent convection coefficient		
				Dagal

		HEAT TRANSFER QUESTION BAN	K	2019-20
8 9 10		Derive the general heat conduction equation in Cartesian coordinate. Derive the general heat conduction equation in Cylindrical coordinate Derive the general heat conduction equation in Spherical coordinate.	L ₃ L ₃ L ₃	10M 10M 10M
	<u>(</u>	<u>UNIT –II</u> One Dimensional Steady State Heat Conduction and Transient Heat Condu	<u>icti</u>	0 <u>n</u>
1	a) b)	Derive an expression for heat conduction through a plane wall The inner surface of a plane Brick wall is at 60 0 C and the outer surface is at 35 0 C. Calculate the rate of heat transfer per m ² of surface area of the wall, which is 220 mm thick. Take thermal conductivity of the brick is 0.51 W/ m 0 C.	L	5M 5M
2	a) b)	Derive an expression for heat conduction through a composite wall A reactor's wall, 320 mm thick, is made up of an inner layer of fire brick (k = 0.84 W/m 0 C) covered with a layer of insulation (k = 0.16 W/m 0 C). The reactor operates at a temperature of 1325 0 C and the ambient temperature is 25 0 C. Determine the thickness of fire brick and insulation which gives minimum heat loss.	La La	3 5M
3		A steam pipe of outside diameter 80 mm and 25 m long conveys 800 kg of steam per hour at a pressure of 22 bar. The steam enters the pipe with a dryness fraction of 0.99 and is to leave the other end of the pipe with the minimum dryness fraction of 0.97. This is to be accomplished by using a lagging material (k = $0.2 \text{ W/m}^{\circ}\text{C}$), determine its minimum thickness to meet the necessary condition, if the temperature of the outside surface of lagging is 25 $^{\circ}\text{C}$. Assume that there is no pressure drop across the pipe and the resistance of the pipe material is negligible.	L	10M
4	a) b)	Obtain the expression of heat conduction through hollow cylinder. A spherical shaped vessel of 1.4 m diameter is 90 mm thick. Find the rate of heat leakage, if the temperature difference between the inner and outer surface is 220 0 C. Thermal conductivity of the material of the sphere is 0.083 W/m 0 C.	La La	5M 5M
5	a) b)	Derive the expression for the overall heat transfer coefficient for a plane wall. A cold storage room has walls made up of 220 mm of brick on outside 90 mm of plastic foam and finally 16 mm of wood on the inside. The outside and inside air temperatures are 25 0 C and -3 0 C respectively. If the inside and outside and heat transfer coefficients are 30 and 11 W/ ^{m2 0C} respectively the thermal conductivity of brick, plastic foam and wood are 0.99, 0.02 and 0.17 W/m 0 C respectively. Then determine i. The rate of heat removal by the refrigeration, if the total wall area is 85 m ² ii. The temperature of the inside surface of the brick		3 4M 4 6M
6	a) b)	Explain the concept of critical radius of insulation for a cylinder. Calculate the critical radius of insulation for asbestos ($k = 0.172$ W/m K) surrounding a pipe and exposed to room air at 300 K with $h = 2.8$ W/m K.	L ₂ L ₄	2 5M 6M

Calculate the heat loss from a 475 K, 60 mm diameter pipe when covered with the critical radius of insulation and without insulation. What is lumped system analysis? Derive the expression for it. 7 a) L 4M b) A 50 cm x 50 cm copper slab 6.25 mm thick has a uniform temperature of L_4 6M 300 °C. Its temperature is suddenly lowered to 36 °C. Calculate the time required for the plate to reach the temperature of 108. Take $\rho = 9000 \text{ kg/m}^3$, $c = 0.38 \text{ kJ/kg} {}^{0}\text{C}, k = 370 \text{ W/m} {}^{0}\text{C} \text{ and } h = 90 \text{ W/m} {}^{2} {}^{0}\text{C}.$ Write short note on transient heat conduction. 8 a) L_1 4Mb) A steel ingot (large in size) heated uniformly to 745 0 C is hardened by L₄ 6M quenching it in an oil bath maintained at 20 °C. Determine the length of time required for the temperature to reach 595 ⁰C at a depth of 12 mm. The ingot may be approximated as a flat plate. For steel ingot take α (thermal diffusivity) = $1.2 \times 10^{-5} \text{ m}^2/\text{s}$. Sketch various types of fins. Give examples of use of fins in various L_3 5M a) engineering applications b) Calculate the amount of energy required to solder together two very long L_4 5M pieces of bare copper wire 1.5 mm diameter with solder that melts at $190 \,{}^{0}$ C. The wires are positioned vertically in air at 20 ⁰C. Assume that the heat transfer coefficient on the wire surface is 20 W/m^2 0C and thermal conductivity of wire alloy is 330 W/m 0 C. Explain the fin effectiveness and fin efficiency L_2 5M A longitudinal copper fin (k = 380 W/m $^{\circ}$ C) 600 mm long and 5 mm L₄ b) 5M diameter is exposed to air stream at 20 °C. The convective heat transfer coefficient is 20 W/ m^{2} ⁰C. If the fin base temperature is 150 ⁰C, determine The heat transferred, and i. ii. The efficiency of the fin <u>UNIT –III</u> Convection 1 Explain hydrodynamic and thermal boundary layer with reference to flow L_2 10M over flat plate. What is convective heat transfer? Distinguish between free and forced L_1 2 a) 5M convection

- b) Derive the expression for Reynolds number and how flows are determined L_3 5M by Revnolds number?
- Air at 20 0 C and at a pressure of 1 bar is flowing over a flat plate at a L₄ 3 10M velocity of 3 m/s. If the plate is 280 mm wide and at 56 ⁰C. Calculate the following quantities at x = 280 mm, given that properties of air at the bulk mean temperature $\left(\frac{20+56}{2}\right) = 38 \,{}^{0}\text{C}$ are $\rho = 1.1374 \text{ kg/m}^{3}$, k = 0.02732 W/m ${}^{0}C$, $c_{p} = 1.005 \text{ kJ/kg K}$, $v = 16.76 \times 10^{-6} \text{ m}^{2}/\text{s}$, Pr = 0.7
 - i. Boundary layer thickness
 - ii. Local friction coefficient
 - iii. Average friction coefficient
 - iv. Thickness of the boundary layer

HEAT TRANSFER QUESTION BANK 2019-20

- 9
- 10 a)

HEAT TRANSFER QUESTION BANK 2019-20

 4 a) What is the physical significance of the Nusselt number? How is it defined L₁ 4M b) Assuming that a man can be represented by a cylinder 350 mm in diameter and 1.65 m high with a surface temperature of 28 %C. Calculate the heat he would lose while standing in a 30 km/h wind at 12 %C. 5 a) Define Nusselt number, Prandt number and their significance. L₁ 4M b) Air stream at 24 %C is flowing at 0.4 m/s across a 100 W bulb at 130 %C. If L₄ 6M the bulb is approximately by a 65 mm diameter sphere. Calculate i. The percentage of power lost due to convection 6 In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 L₄ 10M m/s. The tube surface temperature is maintained at 70 %C and the following water is heated from the inlet temperature 15 %C to an outlet temperature, Calculate the following: i. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer of 10 %C. Calculate heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as ρ = 1.06 kg/m³, v = 18.97 x 10⁴ m²/s, c_p = 1.004 kJ/kg⁰C and k = 0.1042kJ/mh⁶C 8 a) Mention correlation for flow over a horizontal plate L₃ 5M b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 %C, taking upward is L₄ 5M placed in still air at 25 %C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation h = 3.05(Tr)¹⁴ W/m² %C. where T_f is the mean film temperature in degree Kelvin 9 a) Mention correlation for across bank of tubes. L₃ 4M b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at 1.4 M b) A cylinder body of 36.5 %C. The surrounding		Ň	 v. Local convective heat transfer vi. Average convective heat transfer vii. Rate of heat transfer by convection 		
b) Assuming that a man can be represented by a cylinder 350 mm in diameter L ₄ 6M and 1.65 m high with a surface temperature of 28 °C. Calculate the heat he would lose while standing in a 30 km/h wind at 12 °C. 5 a) Define Nusselt number, Prandt number and their significance. L ₁ 4M b) Air stream at 24 °C is flowing at 0.4 m/s across a 100 W bulb at 130 °C. If the bulb is approximately by a 65 mm diameter sphere. Calculate i. The heat transfer rate, ii. The percentage of power lost due to convection 6 In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 L ₄ 10M m/s. The tube surface temperature is maintained at 70 °C and the following water is heated from the inlet temperature 15 °C to an outlet temperature, Calculate the following: i. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer coefficient from the tube surface to the water iii. The heat transfer for from convection is given by the following empirical relation for flow over a horizontal plate L ₃ 5M b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is L ₄ 5M placed in still	4	a)	What is the physical significance of the Nusselt number? How is it defined	L_1	4M
5 a) Define Nusselt number, Prandtl number and their significance. L ₁ 4M b) Air stream at 24 0 C is flowing at 0.4 m/s across a 100 W bulb at 130 0 C. If L ₄ 6M the bulb is approximately by a 65 mm diameter sphere. Calculate i. The heat transfer rate, ii. The percentage of power lost due to convection 6 In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 L ₄ 10M m/s. The tube surface temperature is maintained at 70 $^{\circ}$ C and the following water is heated from the inlet temperature 15 0 C to an outlet temperature, Calculate the following: i. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer of 20 $^{\circ}$ C. Calculate heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as $\rho = 1.06 \text{ kg/m}^3.v = 18.97 \text{ x} 10^{-6} \text{ m}^2.\text{s}, c_p = 1.004 \text{ kJ/kg}^0 \text{ C} and k = 0.1042 \text{ kJ/m}^0 \text{ C}$ 8 a) Mention correlation for flow over a horizontal plate L ₃ 5M b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 $^{\circ}$ C, taking upward is placed in still air at 25 $^{\circ}$ C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation h = 3.05(Tr) ^{1/4} W/m ² $^{\circ}$ C. where T _r is the mean film temperature in degree Kelvin 9 a) Mention correlation for across bank of tubes. L ₃ 4M b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at a constant temperature of 36.5 $^{\circ}$ C. The surroun		b)	Assuming that a man can be represented by a cylinder 350 mm in diameter and 1.65 m high with a surface temperature of 28 0 C. Calculate the heat he would lose while standing in a 30 km/h wind at 12 0 C.	L ₄	6M
b) Air stream at 24 °C is flowing at 0.4 m/s across a 100 W bulb at 130 °C. If L ₄ 6M the bulb is approximately by a 65 mm diameter sphere. Calculate i. The heat transfer rate, ii. The percentage of power lost due to convection 6 In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 L ₄ 10M m/s. The tube surface temperature is maintained at 70 °C and the following water is heated from the inlet temperature 15 °C to an outlet temperature, Calculate the following: i. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer coefficient from the tube surface to the water ii. The heat transfer of 20 °C. Calculate heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as $\rho = 1.06 \text{ kg/m}^3$, $v = 18.97 \times 10^{-6} \text{ m}^2$ /s, $c_p = 1.004 \text{ kJ/kg}^{\circ}$ C and $k = 0.1042 \text{ kJ/m}^{\circ}$ C 8 a) Mention correlation for flow over a horizontal plate L ₃ 5M b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is placed in still air at 25 °C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation $h = 3.05(T_f)^{1/4} W/m^2 °C$. where T_f is the mean film temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if $\rho = 1.025 \text{ kg/m}^3$, $v = 15.06 \times 10^6 m^2$ /s, $c_p = 0.96 \text{ kJ/kg}^C$ and $k = 0.0892 \text{ kJ/m}^C$ and $\beta = 1/298 \text{ k}^1$. Assume Nu=0.12(Gr.Pr) ^{1/3} . 10 Calculate the heat transfer from a 60 W in candescent bulb at 115 °C to L ₄ 10M ambient air at 25 °C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power l	5	a)	Define Nusselt number, Prandtl number and their significance.	L_1	4M
 In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 L₄ In a straight tube surface temperature is maintained at 70 °C and the following water is heated from the inlet temperature 15 °C to an outlet temperature of 45 °C. taking the physical properties of water at its mean bulk temperature. Calculate the following: The heat transfer coefficient from the tube surface to the water The heat transfer coefficient from the tube surface to the water The heat transfer coefficient for the tube surface to the water The heat transfer or file of the convection A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100°C L₄ A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100°C L₄ A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100°C L₄ A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100°C L₄ A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100°C L₄ A vertical cylinder 1.5m kigh and 180mm in diameter is maintained at 100°C L₄ A vertical cylinder 1.5m kigh and 180mm in diameter is maintained at 100°C L₄ A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is L₄ A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is L₄ A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is L₄ M ention correlation for across bank of tubes. A cylinder body of 300 mm diameter and 1.6 m height is maintained at a L₄ A cylinder body of 300 mm diameter and 1.6 m height is maintained at a L₄ A cylinder body of 300 mm diameter and 1.6 m height is maintained at a L₄ A cylinder body of m²/s, c_p = 0.96 kJ/kg°C and k = 0.0892 kJ/mh°C and β=1.228 k⁴. Assume Nu=0.12(Gr.Pr)^{1/3}. Calculate the heat transfer from a 60 W in candescent bulb at 115 °C		b)	Air stream at 24 ⁰ C is flowing at 0.4 m/s across a 100 W bulb at 130 ⁰ C. If the bulb is approximately by a 65 mm diameter sphere. Calculate i. The heat transfer rate,	L ₄	6M
 7 a) Mention the empirical correlation of free convection L₃ 4M b) A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100°C L₄ 6M in an atmosphere environment of 20 °C. Calculate heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as ρ = 1.06 kg/m³,v = 18.97 x 10⁻⁶ m²/s, c_p = 1.004 kJ/kg⁰C and k = 0.1042kJ/mh⁰C 8 a) Mention correlation for flow over a horizontal plate L₃ 5M b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is placed in still air at 25 °C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation h = 3.05(T_f)^{1/4} W/m² °C. where T_f is the mean film temperature in degree Kelvin 9 a) Mention correlation for across bank of tubes. L₃ 4M b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at a L₄ 6M constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if ρ = 1.025 kg/m³,v = 15.06 x 10⁻⁶ m²/s, c_p = 0.96 kJ/kg⁰C and k = 0.0892 kJ/mh⁰C and β⁼1/298 K⁻¹. Assume Nu=0.12(Gr.Pr)^{1/3}. 10 Calculate the heat transfer from a 60 W in candescent bulb at 115 °C to L₄ 10M ambient air at 25 °C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr)^{1/4}. 	6		In a straight tube of 60 mm diameter, water is flowing at a velocity of 12 m/s. The tube surface temperature is maintained at 70 °C and the following water is heated from the inlet temperature 15 °C to an outlet temperature of 45 °C. taking the physical properties of water at its mean bulk temperature, Calculate the following: i. The heat transfer coefficient from the tube surface to the water ii. The heat transferred iii. The length of the tube	L ₄	10M
 b) A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100°C L₄ 6M in an atmosphere environment of 20 °C. Calculate heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as ρ = 1.06 kg/m³,v = 18.97 x 10⁻⁶ m²/s, c_p = 1.004 kJ/kg°C and k = 0.1042kJ/mh°C 8 a) Mention correlation for flow over a horizontal plate L₃ 5M b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is placed in still air at 25 °C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation h = 3.05(T_f)^{1/4} W/m² °C. where T_f is the mean film temperature in degree Kelvin 9 a) Mention correlation for across bank of tubes. L₃ 4M b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at a constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if ρ = 1.025 kg/m³,v = 15.06 x 10⁻⁶ m²/s, c_p = 0.96 kJ/kg°C and k = 0.0892 kJ/mh°C and β⁼1/298 K⁻¹. Assume Nu=0.12(Gr.Pr)^{1/3}. 10 Calculate the heat transfer from a 60 W in candescent bulb at 115 °C to L₄ 10M ambient air at 25 °C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr)^{1/4}. 	7	a)	Mention the empirical correlation of free convection	L_3	4M
 8 a) Mention correlation for flow over a horizontal plate L₃ 5M b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is placed in still air at 25 °C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation h = 3.05(T_f)^{1/4} W/m² °C. where T_f is the mean film temperature in degree Kelvin 9 a) Mention correlation for across bank of tubes. L₃ 4M b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at a constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if ρ = 1.025 kg/m³, v = 15.06 x 10⁶ m²/s, c_p = 0.96 kJ/kg⁰C and k = 0.0892 kJ/mh⁰C and β=1/298 K⁻¹. Assume Nu=0.12(Gr.Pr)^{1/3}. 10 Calculate the heat transfer from a 60 W in candescent bulb at 115 °C to L₄ 10M ambient air at 25 °C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr)^{1/4}. 		b)	A vertical cylinder 1.5m high and 180mm in diameter is maintained at 100^{0} C in an atmosphere environment of 20 0 C. Calculate heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as $\rho = 1.06 \text{ kg/m}^{3}$, $\nu = 18.97 \text{ x} 10^{-6} \text{ m}^{2}$ /s, $c_{p} = 1.004 \text{ kJ/kg}^{0}$ C and $k = 0.1042$ kJ/mh 0 C	L ₄	6M
 b) A horizontal plate measuring 1.5 m x 1.1 m and at 215 °C, taking upward is L₄ 5M placed in still air at 25 °C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation h = 3.05(T_f)^{1/4} W/m² °C. where T_f is the mean film temperature in degree Kelvin 9 a) Mention correlation for across bank of tubes. L₃ 4M b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at a constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if ρ = 1.025 kg/m³,v = 15.06 x 10⁻⁶ m²/s, c_p = 0.96 kJ/kg°C and k = 0.0892 kJ/mh°C and β=1/298 K⁻¹. Assume Nu=0.12(Gr.Pr)^{1/3}. 10 Calculate the heat transfer from a 60 W in candescent bulb at 115 °C to L₄ 10M ambient air at 25 °C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr)^{1/4}. 	8	a)	Mention correlation for flow over a horizontal plate	L_3	5M
 9 a) Mention correlation for across bank of tubes. L₃ 4M b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at a L₄ 6M constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if ρ = 1.025 kg/m³, v = 15.06 x 10⁻⁶ m²/s, c_p = 0.96 kJ/kg⁰C and k = 0.0892 kJ/mh⁰C and β=1/298 K⁻¹. Assume Nu=0.12(Gr.Pr)^{1/3}. 10 Calculate the heat transfer from a 60 W in candescent bulb at 115 ⁰C to L₄ 10M ambient air at 25 ⁰C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr)^{1/4}. 		b)	A horizontal plate measuring 1.5 m x 1.1 m and at 215 0 C, taking upward is placed in still air at 25 0 C. Calculate the heat loss by natural convection. The convective film coefficient for free convection is given by the following empirical relation $h = 3.05(T_{f})^{1/4}$ W/m ² 0 C. where T_{f} is the mean film temperature in degree Kelvin	L ₄	5M
 b) A cylinder body of 300 mm diameter and 1.6 m height is maintained at a L₄ 6M constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if ρ = 1.025 kg/m³,v = 15.06 x 10⁻⁶ m²/s, c_p = 0.96 kJ/kg⁰C and k = 0.0892 kJ/mh⁰C and β=1/298 K⁻¹. Assume Nu=0.12(Gr.Pr)^{1/3}. 10 Calculate the heat transfer from a 60 W in candescent bulb at 115 ⁰C to L₄ 10M ambient air at 25 ⁰C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr)^{1/4}. 	9	a)	Mention correlation for across bank of tubes.	L_3	4M
10 Calculate the heat transfer from a 60 W in candescent bulb at 115 0 C to L ₄ 10M ambient air at 25 0 C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr) ^{1/4} .		b)	A cylinder body of 300 mm diameter and 1.6 m height is maintained at a constant temperature of 36.5 °C. The surrounding temperature is 13.5 °C. Find out the amount of heat to be generated by the body per hour if $\rho = 1.025$ kg/m ³ , $\nu = 15.06 \times 10^{-6}$ m ² /s, $c_p = 0.96$ kJ/kg ⁰ C and $k = 0.0892$ kJ/mh ⁰ C and $\beta = 1/298$ K ⁻¹ . Assume Nu=0.12(Gr.Pr) ^{1/3} .	L ₄	6M
- '	10		Calculate the heat transfer from a 60 W in candescent bulb at 115 0 C to ambient air at 25 0 C. Assuming the bulb as a sphere of 50 mm diameter. Also, find the percentage of power lost by free convection. The correlation is given by: Nu = 0.60 (Gr.Pr) ^{1/4} .	L ₄	10M

<u>UNIT –IV</u>

Phase Change Heat Transfer and Heat Exchangers

1	a)	Differentiate between the mechanism of filmwise and dropwise condensation	L ₃	5M
	b)	Explain briefly the condensation mechanism on the vertical plate	L_2	5M
2	- /	Explain briefly the various regimes of saturated pool boiling with diagram	L_3	10M
3	a)	Mention correlation in boiling with proper expression	L_3	5M
	b)	Mention correlation in condensation with proper expression	L ₃	5M
4	,	Saturated steam at $t_{sat} = 90$ ⁰ C (P= 70.14 kPa) condenses on the outer surface	L_4	10M
		of a 1.5 m long 2.5 m OD vertical tube maintained at a uniform temperature		
		$t_{\infty} = 70$ ⁰ C. Assuming film condensation. Calculate		
		i). The local transfer coefficient at the bottom of the tube, and		
		ii). The average heat transfer coefficient over the entire length of the tube.		
		Properties of water of 80 0 C, $\rho_{l} = 974$ kg/m ³ , $k_{t} = 0.668$ W/mK, $\mu_{l} =$		
		$0.335 \times 10^3 \text{ kg/m}^3$, $h_{fg} = 2309 \text{ kJ/kg}$, $\rho_v \ll \rho_l$		
5	a)	What are the applications of boiling and condensation process?	L_1	4M
	b)	A vertical tube of 60 mm outside diameter and 1.2 m long is exposed to	L_4	6M
		steam at atmospheric pressure. The outer surface of the tube is maintained at		
		a temperature of 50 ⁰ C by circulated cold water through the tube. Calculate		
		the following		
		i). The rate of heat transfer to the coolant, and		
		ii). The rate of condensation of steam		
6	a)	What is heat exchanger?	L_1	3M
	b)	How are heat exchangers classified explain with neat diagram	L_2	7M
7	a)	Derive the expression for Logarithmic Mean Temperature Difference	L_3	5 M
		(LMTD) in case of parallel flow		
	b)	Derive the expression for Logarithmic Mean Temperature Difference	L_3	5 M
_		(LMTD) in case of counter flow	_	
8		The flow rate of hot and cold water streams running through a parallel flow	L_4	10M
		heat exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures 75^{-0} cm = 1.20 0 cm		
		on the hot and cold sides are 75 °C and 20 °C respectively. The exit		
		temperature of hot water is 45 °C. If the individual heat transfer coefficients		
0	``	on the both sides are 650 W/m ⁻¹ C, calculate the area of heat exchanger.	т	43.4
9	a) h)	Draw the boiling curve of the water and explain.	L ₃	4M
	D)	In a certain double pipe heat exchanger not water now at a rate of 5000 kg/n and ass social from $0.5^{\circ}C$ to $65^{\circ}C$. At the same time 50000 kg/h of sociars	L 4	OIVI
		and gas cooled from 95°C to 05°C. At the same time 50000 kg/h of cooling water at 20^{-0} C enters the best exchanger. The flow conditions are that		
		Value at 50°C enters the heat exchanger. The now conditions are that Loverall heat transfer coefficient remains constant at 2270 $W/m^2 K$		
		Determine the heat transfer area required and the effectiveness assuming		
		two streams are in parallel flow Assume for the both the streams $c_{1} - 4.2$		
		kJ/kg K		
10	a)	Distinguish between Boiling and Condensation	L ₂	4M
)		<u> </u>	

Two fluids A and B exchange heat in a counter-current heat exchanger. L_4 b) 6M Fluid A enters at 420 ⁰C and has a mass flow rate of 1 kg/s. Fluid B enters at 20 ^oC and has a mass flow rate of 1 kg/s. Effectiveness of heat exchanger is 75 %. Determine: i). The heat transfer rate ii). The exit temperature of fluid B. Specific heat of fluid A is 1 kJ/kg and that of fluid B is 4 kJ/kg K. UNIT –V Radiation a) Define Radiation heat transfer L_1 5M 1 b) Define the term absorptivity, reflectivity and transmittivity of radiation L_1 5M a) State the following law: 2 L_1 5M i) Wien's displacement law ii) Stefan Boltzmann law b) State the following law: L_1 5M i) Krichhoff's law ii) Planck's law 3 a) What is black body? How is differ from a gray body? 4M L_1 The effective temperature of the body having an area of 0.12 m^2 is 527 °C. L_4 b) 6M Calculate the following i) The total rate of energy emission ii) The wave length of maximum monochromatic emissive power Calculate the following for an industrial furnace in the form of a black body L_4 10M 4 and emitting radiation at 2500 °C. i) Monochromatic emissive power at 1.2 µm length ii) Wave length at which the emissive is maximum iii) Maximum emissive power iv) Total emissive power v) Total emissive power of the furnace if its assumed as a real surface with emissivity equal to 0.9 a) Define Shape factor and mention salient features of its. 5 L_1 4MMention the shape factor's fact and properties for specific geometries and L_3 b) 6M for the analysis of radiant relation exchange between surfaces. The radiation shape factor the circular surface of a thin hollow cylinder of L_4 6 a) 10M 10 cm diameter and 10 cm length is 0.1716. What is the shape factor of the curved surface of the cylinder with respect to itself. Discuss electrical network analogy for thermal radiation system L_3 7 a) 5M Write short note on radiation shields b) L_1 5M Calculate the net radiant exchange per m^2 area for two large parallel plates 8 L_4 10M at temperature at 427 °C and 27 °C respectively. ε (hot plate)=0.9 and ε (cold plate)=0.6. If a polished aluminium shield is placed between them, find the percentage reduction in the heat transfer, ε (shield)=0.4 Determine the radiant heat exchanger in W/m^2 between two large parallel L₄ 9 a) 5M steel plates of emissivities 0.8 and 0.5 held at temperature of 1000 K and 500 K respectively, if a thin copper plate of emissivity 0.1 is introduced as a

HEAT TRANSFER QUESTION BANK 2019-20

HEAT TRANSFER QUESTION BANK 2019-20

radiation shield between the two plates. Use $\sigma = 5.67 \times 10^{-8} \text{ W/m}^2 \text{K}^4$.

- b) Assuming the sun to be a black body emitting radiation with maximum L_4 5M intensity at $\lambda = 0.49 \mu m$, Calculate the following i). The surface temperature of the sun ii). The heat flux at surface of the sun
- 10 Consider two large parallel plates one at $t_1 = 727$ °C with emissivity $\varepsilon_1 = 0.8$ L₄ 10M and other $t_2 = 227$ °C with emissivity $\varepsilon_2 = 0.4$. An aluminium radiation shield with an emissivity, $\varepsilon_s = 0.05$ on both side is placed between the plates. Calculate the percentage reduction in heat transfer rate between the plates as result of the shield. Use $\sigma = 5.67 \times 10^{-8}$ W/m²K⁴.